skip to main content


Search for: All records

Creators/Authors contains: "Ball, Catie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Modeling the integrated Hispectra of galaxies has been a difficult task, due to their diverse shapes, but more dynamical information is waiting to be explored in Hiline profiles. Based on simple assumptions, we construct a physically motivated model for the integrated Hispectra: Parameterized Asymmetric Neutral hydrogen Disk Integrated Spectrum Characterization (PANDISC). The model shows great flexibility in reproducing the diverse Hiprofiles. We use Monte Carlo Markov Chain for fitting the model to global Hiprofiles and produce statistically robust quantitative results. Comparing with several samples of Hidata available in the literature, we find the model-fitted widths agree with cataloged velocity widths (e.g.,W50) down to S/N ≲ 6. While dynamical information can only be extracted reliably from spectra with S/N > 8. The model is also shown to be useful for applications like the baryonic Tully–Fisher relation (BTFR) and profile-based sample control. By comparing the model parametervrtovflat, we uncover how the Hiwidth is affected by the structure of the rotation curve, following a trend consistent with the difference in the BTFR slope. We also select a sample of spectra with broad wing-like features suggestive of a population of galaxies with unusual gas dynamics. The PANDISC model bears both promise and limitations for potential use beyond Hilines. Further application on the whole ALFALFA sample will enable us to perform large-scale ensemble studies of the Hiproperties and dynamics in nearby galaxies.

     
    more » « less
  2. Abstract

    The baryonic Tully–Fisher relation (BTFR) has applications in galaxy evolution as a test bed for the galaxy–halo connection and in observational cosmology as a redshift-independent secondary distance indicator. This analysis leverages the 31,000+ galaxy Arecibo Legacy Fast ALFA (AreciboL-band Feed Array) Survey (ALFALFA) sample—which provides redshifts, velocity widths, and Hicontent for a large number of gas-bearing galaxies in the local universe—to fit and test an extensive local universe BTFR. The fiducial relation is fit using a 3000-galaxy subsample of ALFALFA, and is shown to be consistent with the full sample. This BTFR is designed to be as inclusive of ALFALFA and comparable samples as possible. Velocity widths measured via an automated method andMbproxies extracted from survey data can be uniformly and efficiently measured for other samples, giving this analysis broad applicability. We also investigate the role of sample demographics in determining the best-fit relation. We find that the best-fit relations are changed significantly by changes to the sample mass range and to second order by changes to mass sampling, gas fraction, different stellar mass and velocity width measurements. We use a subset of ALFALFA with demographics that reflect the full sample to measure a robust BTFR slope of 3.30 ± 0.06. We apply this relation and estimate source distances, finding general agreement with flow-model distances as well as average distance uncertainties of ∼0.17 dex for the full ALFALFA sample. We demonstrate the utility of these distance estimates by applying them to a sample of sources in the Virgo vicinity, recovering signatures of infall consistent with previous work.

     
    more » « less
  3. Abstract

    We report the discovery of two companion sources to a strongly lensed galaxy SPT0418-47 (“ring”) at redshift 4.225, targeted by the JWST Early Release Science program. We confirm that these sources are at a similar redshift to the ring based on Hαdetected in the NIRSpec spectrum and [Cii]λ158μm line from the Atacama Large Millimeter/submillimeter Array (ALMA). Using multiple spectral lines detected in JWST/NIRSpec, the rest-frame optical to infrared images from NIRCam and MIRI and far-infrared dust continuum detected by ALMA, we argue that the newly discovered sources are actually lensed images of the same companion galaxy SPT0418-SE, hereafter referred to “SE,” located within 5 kpc in the source plane of the ring. The star formation rate derived using [Cii] and the dust continuum puts a lower limit of 17Myr−1, while the SFRHαis estimated to be >2 times lower, thereby confirming that SE is a dust-obscured star-forming galaxy. Analysis using optical strong line diagnostics suggests that SE has near-solar elemental abundance, while the ring appears to have supersolar metallicity O/H and N/O. We attempt to reconcile the high metallicity in this system by invoking early onset of star formation with continuous high star-forming efficiency or by suggesting that optical strong line diagnostics need revision at high redshift. We suggest that SPT0418-47 resides in a massive dark-matter halo with yet-to-be-discovered neighbors. This work highlights the importance of joint analysis of JWST and ALMA data for a deep and complete picture of the early universe.

     
    more » « less
  4. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    We present recent developments on Cornell’s 2nd generation z (redshift) and Early Universe Spectrometer (ZEUS-2). ZEUS-2 is a long-slit echelle-grating spectrometer, originally implemented to deliver R∼1000 spectroscopy in the 350-, and 450-micron telluric windows using NIST Transition-Edge Sensed (TES) bolometer arrays. We have expanded its capabilities to also cover the 200-micron window, and present first-light data for the new array from our 2019 observing campaign on the Atacama Pathfinder EXperiment (APEX) telescope. We also discuss the various enhancements we have implemented to improve observing efficiency and noise performance, including identifying and mitigating vibrations in hardware and improving the stability and robustness of the control software for the detector temperature. Furthermore, we have implemented several software routines to interface with the telescope control systems. These improvements, demonstrated during our recent observing campaign in Nov-Dec 2021, resulted in enhanced reliability and ease of operation, as well as increased sensitivity. A data-driven software pipeline, leveraging data from all 300 detectors on the array to remove common-mode noise, was implemented, and noise performance was further improved by robustly detecting unstable detectors and disabling them during observations. 
    more » « less
  5. We present sensitive HI imaging of the "Almost Dark" galaxies AGC229385 and AGC229101. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. Deeper ground- and space-based imaging reveals very low surface brightness optical counterparts in both systems. The resulting M_HI/L_B ratios are among the highest ever measured for individual galaxies. Here we combine VLA and WSRT imaging of these two systems, allowing us to preserve surface brightness sensitivity while working at high angular resolution. The resulting maps of HI mass surface density, velocity field, and velocity dispersion are compared to deep optical and ultraviolet imaging. In both systems the highest column density HI gas is clumpy and resolved into multiple components. In the case of AGC229385, the kinematics are inconsistent with a simple rotating disk and may be the result of either an infall episode or an interaction between two HI-rich disks.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College. 
    more » « less
  6. We present VLA HI imaging of the "Almost Dark" galaxies AGC 227982, AGC 268363, and AGC 219533. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. These three HI-rich objects harbor some of the most extreme levels of suppressed star formation amongst the isolated sources in the ALFALFA catalog. Our new multi-configuration, high angular (~20") and spectral (1.7 km/s) resolution HI observations produce spatially resolved column density and velocity distribution moment maps. We compare these images to Sloan Digitized Sky Survey (SDSS) optical images. By localizing the HI gas, we identify previously unknown optical components (offset from the ALFALFA pointing center) for AGC 227982 and AGC 268363, and confirm the association with a very low surface brightness stellar counterpart for AGC 219533. Baryonic masses are derived from VLA flux integral values and ALFALFA distance estimates, giving answers consistent with those derived from ALFALFA fluxes. All three sources appear to have fairly regular HI morphologies and show evidence of ordered rotation.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College. 
    more » « less